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The mystery of potentiostat stability explained 

I – INTRODUCTION 
Like the vast majority of research instruments, 
potentiostats are seldom used in trivial 
experimental conditions. 
 
Potentiostat/galvanostats do not only have to 
deal with a vast, highly eclectic range of 
research activities, but also wide-ranging 
electrochemical systems and experiments. 
 
Furthermore, due to their nature, the 
electrochemical experiments evolve over 
extremely large ranges of values of the 
significant parameters.  
 
In corrosion applications, for example, 
recording the current over 5 or 6 current 
ranges in the same experiment is very 
common. It is not hard to imagine that, in such 
a demanding environment, potentiostats are 
often pushed to their limits and used in 
situations that may compromise their 
performance. There are always times when 
potentiostats do not function as expected. 
Ringing or oscillations, for example, are signs 
that a potentiostat is struggling  to maintain or 
has even lost control of the cell’s potential.  
This document aims is to clarify the origins of 
stability problems of such instruments using 
the example of the VMP3 multichannel 
potentiostat. 
 
A detailed understanding of what causes 
instability will increase your confidence, and 
enable you to experiment with parameters 
such as “current range” or “bandwidth” or 
choosing a resistor value in series with the 
working electrode to settle down your 
potentiostat without loss of accuracy. 
 
Although we will try to keep the text 
accessible, a knowledge of potentiostat 
design and terms like impedance, 
capacitance, and Bode representation is 
recommended; as well as basic skills relating 
to complex number calculus. 
 

Please note: The VMP3 instrument is used as 
an example but the same specifications can 
be observed with VMP300, VSP, SP-150, SP-
50 potentiostats. 
 
II – POTENTIOSTAT, BASIC PRINCIPLES 
Since 1942, when Hickling built the first three 
electrode potentiostats, significant progress 
has been made to improve the potentiostat’s 
capabilities. Hickling had the brilliant idea of 
automatically controlling the cell potential by 
means of a third electrode: the reference 
electrode. This principle remains in practice 
today. 
 
At its simplest, a potentiostat measures the 
potential difference between the working and 
the reference electrode, applies, current 
through the counter electrode, and measures 
the current as an iR drop over a series resistor 
(Fig. 1). 
 

 
Figure 1: Basic potentiostat design. 

The control amplifier (CA) is responsible for 
keeping the voltage between the reference 
and the working electrode as close as possible 
to the voltage of the input source Ei. It adjusts 
its output to automatically control the cell’s 
current so that this equality condition is 
satisfied. To understand how it works, it is 
necessary to write down some equations well 
known to electronics engineers.  
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Figure 2: An electrochemical cell and the current 
measuring resistor can be replaced by 2 impedances. 
 
Before moving forward with the maths, please 
note that from an electrical point of view, the 
electrochemical cell and the current 
measuring resistor Rm can be regarded as two 
impedances (Fig. 2). Z1 includes Rm in series 
with the interfacial impedance of the counter 
electrode and the solution resistance 
between the counter and the reference. Z2 
represents the interfacial impedance of the 
working electrode in series with the solution 
resistance between the working and the 
reference electrodes. 
 
The role of the control amplifier is to amplify 
the potential difference between the positive 
(or non-inverting) input and the negative (or 
inverting) input. This can be translated 
mathematically into the following equation: 
 

( ) ( )out i rE A E E A E E+ −= ⋅ − = ⋅ −                  (1) 
 
where A is the amplification factor of the CA.  
 
At this point, we should make the assumption 
that no, or only insignificant current, is flowing 
through the reference electrode. This 
corresponds to practical examples since the 
reference electrode is connected to a high 
impedance electrometer. Thus the cell 
current can be written in two ways: 
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Combining Eqs. 2 and 3 yields Eq. 4. 
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whereβ  is the fraction of the output voltage 
of the control amplifier returned to its 
negative input; namely the feedback factor. 
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Combining Eqs. 1 and 4 yields Eq. 6. 
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When the quantity Aβ  becomes very large 
with respect to 1, Equation 6 reduces to Eq. 7, 
which is one of the negative feedback 
equations. 
 

r iE E=                            (7) 
 
Equation 7 proves that the control amplifier 
works to keep the voltage between the 
reference and the working close to the input 
source voltage. 
 
III – WHERE ARE THOSE OSCILLATIONS 
COMING FROM ? 
Let us have a closer look at the control 
amplifier. Equation 7 is only true when Aβ  is 
very large. Since the β  fraction is always 
inferior to one, this is equivalent to saying that 
the amplification factor A must be very large. 
In practice, the control amplifier amplifies 
about 1,000,000 times the input difference 
voltage. Actually, this is true only for low 
frequency signals. A real control amplifier is 
made of real, hence imperfect, components. 
Therefore, it does not amplify in the same way 
as a low and a high frequency signal. It is 
natural to think that a slowly varying signal is 
amplified better than a high-speed signal. The 
control amplifier is increasingly compromised 
as the frequency increases because it cannot 
catch-up with high-speed variation signals. So 
the amplification decreases as the frequency 
increases. Furthermore, the output signal 
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shifts with regards to the input signal. 
Obviously the amplification is a function of 
frequency, which can be expressed by a 
simplified mathematical model described by 
Eq. 8. 

( )
1

a

aA f fj
f

=
+

                                                (8) 

Where f is the frequency, a the low frequency 
amplification, fa is called the break down 
frequency, and 1−=j .  
As for any complex number, the amplitude 
can be expressed in polar form in terms of 
magnitude and phase:  
 

AjeAA ϕ⋅=                (9) 
 
According to Eq. 8, the magnitude is 
calculated as: 
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and the phase as: 
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Figure 3 shows the control amplification 
magnitude and phase plotted vs. frequency 
for some common values of a  and fa. This 
graphical representation is very intuitive and 
very close to the real behaviour of the control 
amplifier. The amplification factor goes down 
for frequencies bigger than the break down 
frequency. When the amplification reaches 
unity, the control amplifier no longer 
amplifies; it becomes an attenuator. The 
frequency at which the amplification reaches 
unity is called the unity-gain bandwidth. 
 
 
 
 
 

Figure 3: Bode plot of the amplification magnitude 
and phase for a = 106 and fa = 10 Hz.  
 
Now, let us go back to the Equation 6 and note 
that both the fraction β  and amplification A 
are complex numbers. What is happening 
when the quantity Aβ  tends to -1 ?  
 

1Aβ = −                                                (12) 
 
It is not difficult to see that the limit of Eq. 6 is 
-∞. In this case, the control amplifier output 
heads to the power supply limit as fast as it 
can. When the limit is approached, the control 
amplifier enters a nonlinear zone. At this 
point, it can either stay forever or head to the 
other power supply limit and so on until the 
power supply is disconnected. The second 
state is named oscillatory. In both states, the 
potentiostat has lost the control of the cell, 
and the system has become unstable. Note 
that the stability is determined only by the βA 
factor according to Equation 12. Thus a 
stability problem is exclusively due to the 
control amplifier characteristics, the current 
measuring resistor (included in Z1), and the 
cell. It has nothing to do with the excitation 
signal! 
Replacing the polar form of both β and A in 
the Eq. 12 yields Eq. 13: 
 

( )| | | | 1AjA e βϕ ϕβ +⋅ ⋅ = −                                            (13) 
 
which is equivalent to: 
 

1=⋅ Aβ     (14) 
 
and: 
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°±=+ 180Aϕϕβ    (15) 
 
We have seen that the phase shift associated 
with the control amplifier can reach –90° for 
frequencies over the break frequency (Fig. 3). 
If the phase shift associated with the feedback 
is significant, then the total phase shift may 
reach –180°. If this occurs at frequencies 
where Eq. 14 is satisfied, then the system 
becomes unstable.  
 
A very simple graphical method (also known 
as the Bode method) can be developed from 
Equations 14 and 15 to determine the stability 
of a potentiostat. Both IAI and 1/IβI are 
plotted as a function of frequency on log-log 
coordinates as shown in Figure 3 and Figure 5. 
Equation 14 is fulfilled at the interception of 
the two curves. The total phase shift at the 
intercept can be determined by relating the 
phase shift to the slopes of the IAI and 1/IβI 
curves. As shown in Figure 3, the magnitude 
rolls-off with a factor 10 within one decade of 
frequencies and the phase shift reaches –90° 
for frequencies over the break frequency. 
Generally a negative magnitude slope 
of -10/decade corresponds to –90° phase shift 
while a positive 10/decade to +90° phase 
shift. Thus, if at the intercept point the IAI 
slope falls with -10/decade and the 1/IβI slope 
rises with +10/decade, then the total phase 
shift expressed by the Equation 15 gets close 
to -180° and the potentiostat is unstable. 
 
IV – PRACTICAL SITUATIONS 
Connecting a highly capacitive cell to a 
potentiostat can be a troublesome 
experience, especially when the application 
requires a sensitive current range. Generally 
things get worse on more sensitive current 
ranges. The reason for this is that this type of 
cell, along with the current measuring 
resistor, introduces important phase shifts in 
the feedback signal.  
Let us take a simple cell equivalent circuit for 
a nonfaradaic system (Figure 4).  

Figure 4: Dummy cell for a non-Faradaic system. 
 
In this equivalent circuit, the uncompensated 
solution resistance between the reference 
and the working electrodes is represented by 
the resistor Ru, Cd is the double-layer 
capacitance of the working electrode, and Rm 
is the current measuring resistor. The 
impedance of the counter electrode and the 
solution resistance between the counter and 
the reference electrodes have been neglected 
for the sake of simplicity (these impedances 
can be added to the series with Rm for a more 
sophisticated analysis). In the circuit shown in 
Figure 4, the previously defined Z1 and Z2 
impedances are expressed by Eqs. 16 and 17. 
 

mRZ =1              (16) 

2
1

2u
d

Z R
j fCπ

= +                         (17) 

Replacing terms in Equation 5 yields the 
feedback factor: 
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Now let us perform the stability analysis by 
the Bode method, for some particular values 
of the dummy cell circuit (Figure 5). The 
amplification magnitude A  corresponds to 
the VMP3 control amplifier with the 
bandwidth factor set to 5. The 1 β  quantity 
is calculated for Cd = 1 µF, Rm = 100 kΩ (10 µA 
current range), Ru = 1 kΩ (curve “b”), and Ru = 
0 Ω (curve “a”). The frequencies 1f  and 2f  
defined by the Equations 19 and 20 
correspond to the 1/IβI break frequencies.  
 

 
Figure 5: Bode plots for Figure 4 dummy cell. Cd = 1 µF, 
Rm = 100 kΩ, Ru = 1 kΩ (b), Ru = 0 Ω (a). 
 
According to the Bode method, the phase 
shift can be correlated to the slope of the IAI 
and 1 β  curves at the critical interception 
point. When Ru is set to zero, the 1 β  “a” 
curve has a slope of 10 by one decade of 
frequency and the IAI curve has a –10/decade 
slope for about –180° total feedback phase 
shift at the interception point frequency 
(307 Hz). This situation will cause oscillations. 
When the Ru = 1 kΩ, the intercept point 
moves to a higher frequency where the 1/IβI 
“b” curve has a slope very close to zero. Under 
these circumstances the oscillation condition 
is not met, thus the system should be stable.  
This stability analysis is in perfect agreement 
with the true behaviour of the VMP3 
connected to this type of cell. Figure 6 shows 
a voltage step response of the system 
recorded with the EC-Lab® software. Counter 
current, counter sense, and reference leads 
were connected (CA1, REF3 and REF2) as well 

as the working current with the working sense 
lead (CA2 and REF1). In this test, the cell 
potential and current are recorded on the 
10 µA current range following a 100 mV 
voltage step. 

Figure 6: Step response of the VMP3 for the Figure 5 
dummy cell values. 
 
Figure 5 predicts a stable state when 
Ru = 1 kΩ. Indeed, Figure 6 shows that the cell 
potential quickly reaches the 100 mV level 
with a small overshoot following the voltage 
step made at 1.0 seconds.  
Conversely, when Ru is set to zero, the system 
oscillates as expected. Although, the 
oscillation does not last forever. The 
oscillation amplitude is attenuated in time, 
and the system finally converges to the 
100 mV voltage level. Accurate calculation at 
the intercept point shows that the phase shift 
misses about 0.7° from the “perfect” –180° 
oscillation condition. It is interesting to note 
that the frequency of the oscillation matches 
the intercept point frequency. One can count 
about 6 periods in 20 ms, which yields an 
oscillation period of 3.3 ms thus a frequency 
of 300 Hz.  
To summarize, potentiostats generally 
provide different iR compensation techniques 
to reduce Ru solution resistance. Normally the 
iR compensation cannot completely remove 
the uncompensated resistance and often 
leads to instability problems. This behaviour 
can now be perfectly understood by the 
stability analysis prescribed in this note. 
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V – THE BANDWIDTH PARAMETER 
To adapt to most practical situations, the 
VMP3 was designed with the ability to change 
the control amplifier bandwidth. By changing 
the bandwidth, one can “move” the system 
from an unstable state to a stable one. Seven 
stability factors (also called compensation 
poles) are proposed which correspond to the 
same number of bandwidths of the control 
amplifier. As a reference, the highest value (7) 
corresponds to the highest bandwidth of 
680 kHz and the lowest (1) to the lowest 
bandwidth of 32 Hz. Intermediate values are 
shown Table 1. 
 

Figure 7: VMP2 control amplifier bandwidths. 
 
Generally, the narrower the bandwidth (i.e. 
the lower the value), the more stable it gets, 
but this is not compulsory as shown in Figure 
7. Sometimes the system may become stable 
when the bandwidth is increased, so if 
decreasing does not render the potentiostat 
stable, try to increase it. 
 
Figure 7 shows, along with the VMP3 gain 
magnitude for the different bandwidth 
factors, the 1 β  quantity for the previously 
defined dummy cell. As can be quickly seen, 
the system should be stable with the 
bandwidths factors 7, 6, and 5; it will probably 
manifest an important overshoot with 4 and 
go into strong ringing or even oscillations for 
3, 2, and 1. 
 
 
 

VI – STABILITY CRITERION FOR A 
CAPACITIVE CELL 
A straightforward stability criterion can be 
deduced when the cell is a simple 
capacitance: 

max

4BW
If

Cπ
<     (21) 

where fBW is the unity-gain bandwidth in Hz 
(Tab. I), C is the capacitance in F, and Imax is the 
maximum current of a current range in A. 
 

Table I : Bandwidth poles 

Bandwidth factor Pole frequency ( fBW ) 
1 32 Hz 
2 318 Hz 
3 3.2 kHz 
4 21 kHz 
5 62 kHz 
6 217 kHz 
7 680 kHz 

 
Equation 21 bears reference to a simple 
abacus shown in Figure 8. To find the 
bandwidth factor for a stable system, locate 
the intercept point of the capacitance with 
the desired current range. All the bandwidths 
on the right side of this point will provide 
stability. 
 

 
Figure 8: VMP3 stability abacus; current range vs. 
capacitance: mA/µF, µA/nF, nA/pF. 

1. C = 1 nF, Imax = 10 µA the stability can be 
acquired for BW5 - BW1  
2. C = 1 µF (1000 nF), Imax = 100 µA the 
stability can be acquired for BW2 - BW1 
3. C = 10 µF (10000 nF), Imax = 10 µA the 
stability cannot be acquired  
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If the stability cannot be acquired with one of 
the bandwidth factors, a resistor should be 
added in series with the capacitance. A series 
resistor will have the same effect as the 
uncompensated solution resistance: it will 
stabilize the system but it will introduce an iR 
drop error. The resistor should have a 
minimum potential drop across it in order to 
have minimum influence on the working 
electrode potential. A good compromise is to 
admit a maximum iR drop of 1 mV. 
 
The minimum resistor in series with a 
capacitance for a given current range and a 
given bandwidth factor is given by Equation 
22. 

min
max

2

BW

R
f I Cπ

=
⋅ ⋅ ⋅

  (22) 

As an example, for C = 1000 µF, Imax = 10 µA, 
and bandwidth 7 (fBW = 680 kHz), the 
stabilizing resistor would be about 10 Ω.  
 
Note that higher the bandwidth the smaller 
the series resistor value, thus the smaller the 
iR drop error. 
 
VII – STABILIZING THE POTENTIOSTAT  
If the potentiostat is showing signs of 
instability, it is important to note that this may 
be due, in part, to the cell. 
 
After all, the cell is part of the feedback 
element of the control amplifier. The most 
effective way of find out out what is 
happening, is to draw a circuit model of the 
cell, compute the feedback factor β, and use 
the Bode method for the stability analysis.  
 
This may prove a difficult task since the 
electrochemical cells are seldom made of just 
simple capacitors and resistors.  
 
If you want a quick solution to your problem 
without going into detailed stability analysis, 
you may follow these steps:  
 

• Check your reference electrode. Make 
sure that the inside solution of the reference 
electrode has good contact with the bulk 
electrolyte of the cell. If the porous junction is 
not wet, then the electrode may have 
enormous impedance and together with the 
electrometer input capacitance may 
introduce a supplementary phase shift on the 
feedback.  
 
• Change the Bandwidth factor. Start with a 
lower value. If decreasing does not work, try 
to increase it.  
 
• Choose a higher current range. Since the 
current measuring resistor is part of the 
feedback, the lower it is, the more stable the 
system gets. But there is a limit on how small 
a measuring resistor can be. If it is too small, 
you will not be able to detect the low currents.  
 
• If after the previous steps, the system is 
still unstable, then you have to think about 
adding a resistor in series with the working 
electrode. When the cell is highly capacitive 
and you have an idea about the double layer 
capacitance, then use Eq. 22 to determine the 
resistor value.  
Reduce, if possible, the surface of the working 
electrode. Since the double layer capacitance 
is proportional to the electrode area, lowering 
the surface will reduce the capacitance, which 
is generally responsible for the instabilities. 
 
• Reduce also, if possible, the impedance 
between the counter and the reference 
electrode. This includes the interfacial impe-
dance of the counter electrode and the solu-
tion resistance between the two electrodes. 
 
 
VIII – CONCLUSION  

Potentiostats are very powerful instruments 
with many applications, but we have to be 
careful: we have demonstrated in this 
application note how the potentiostat can 
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lose control of the cell. By understanding the 
mechanism of a potentiostat, and why it 
sometimes loses control, the user will be 
more able to avoid such problems. 
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