

An introduction to Batteries

N. Murer

- 2. Technology
- 1. Characteristics

- 2. Technology
- 1. Characteristics

Definition

An electrical battery is one or more electrochemical cells that convert stored chemical energy into electrical energy (= current).

Primary batteries : cannot be recharged.

Secondary batteries : rechargeable batteries that involve reversible reactions (backward and forward)

How it works

Example of a Li-ion battery

1. Initial state (charged) : $E_{cell} = E_{OC}$

 E_{cell} = Cell voltage = potential difference between the positive electrode and the negative electrode.

(Insertio

How it works

Example of a Li-ion battery

3. Charge : E_{cell} > E_{oc} (discharged) (Forced reactions)

Anode/Oxidation (Desinsertion)

Cathode/Reduction (Re-Insertion)

2. Technology

3. Characteristics

Technology

Various materials are used for the positive and negative electrodes and the electrolyte

- Lead acid batteries (PbO₂-Pb)
- Alkaline batteries (Ni-MH and Ni-Cd)

• Lithium-ion batteries (LiCoO₂-, LiMn₂O₄-,LiFePO₄-C₆)

• Lithium Metal Polymer, Lithium-Air, ...

Technology

Name	Initial Charged State		After discharge			Main	
	+	-	+	-	Electrolyte	application	
Lead Acid	PbO ₂	Pb	PbSO ₄	PbSO ₄	H_2SO_4	Automobile starter, PV	
Nickel Cadmium	NiO(OH)	Cd	Ni(OH) ₂	$Cd(OH)_2$		Flootropics	
Nickel-Metal Hydride	NiO(OH)	MH	Ni(OH) ₂	Μ	КОН		
Li-ion	Li _{1-x} CoO ₂	Li _x C ₆	LiCoO ₂	C ₆	LiPF ₆ in	Electronics	
	Li _{1-x} FePO ₄	Li _x C ₆	LiFePO ₄	C ₆	organic solvent		
Li-Metal	Li	$Li_xV_3O_8$	Li	V_2O_5	Polymer	Electronics, transportation	

Technology

Lithium batteries represent now the largest share of the market

Source : www.umicore.com

Battery Market Booms

- 2. Technology
- 3. Characteristics

Characteristics

Nominal Potential

constant potential value of the battery during the discharge in \underline{V} <u>One cell voltage</u>: Pb = 2 V, Ni-MH = 1.2 V, Li-ion = 3.6 V

Deep discharge or deep charge can lead to potentially dangerous unwanted nonreversible reactions. Ex : H₂ production for Ni-Cd battery.

Characteristics

<u>Capacity</u>

electrical charge that can be stored in a reversible way in <u>A.h</u> 1 mol of electrons ($6.10^{23} e^{-}$) = 1 Faraday = 96 500 C = 26.81 A.h

Energy = Voltage x Capacity in **W.h or V.A.h**

<u>Power</u> = Voltage x Current in <u>W</u>

Discharge rate (or charge): current discharge value (galvanostatic mode) expressed as a function of the theoretical capacity.

C/n cycling rate: C (theoretical capacity)/n (number of hours).

Capacity, Energy and Power are usually expressed by unit of mass or volume for comparison purpose.

Characteristics

Stack : several batteries in series or parallel

Bio**Logic**

Bio**Logic** Science Instruments

Comparison

Battery type	Lead- acid	Ni-MH	Ni-Cd	Li-ion	Rechargeable alkaline
Nominal Potential per cell (V)	2	1.2	1.2	3.6	1.5
Advantages	Cheap	Higher capacity than NiCd Less sensitive than NiCd to overcharging, memory effect and deep unloading	Rather cheap High currents allowed	Highest capacity	High capacity (ca. 2 times higher than Ni-MH)
Drawbacks	Heavy	More expensive than NiCd	Toxic Memory effect Degrades when overcharged Unusable after too deep unloading	Expensive Capacity decreases, even when not used Explosion risk at overheating, over-voltage or polarity reversal	Capacity reduced after each cycle (e.g. 50% after 15 cycles)

Thank you for your

attention